Constructing an orthonormal set of eigenvectors for DFT matrix using Gramians and determinants
نویسنده
چکیده
The problem of constructing an orthogonal set of eigenvectors for a DFT matrix is well studied. An elegant solution is mentioned by Matveev in [1]. In this paper, we present a distilled form of his solution including some steps unexplained in his paper, along with correction of typos and errors using more consistent notation. Then we compare the computational complexity of his method with the more traditional method involving direct application of the Gram-Schmidt process. Finally, we present our implementation of Matveev’s method as a Mathematica module.
منابع مشابه
Eigenvectors and Functions of the Discrete Fourier Transform
A method is presented for computing an orthonormal set of eigenvectors for the discrete Fourier transform (DFT). The technique is based on a detailed analysis of the eigenstructure of a special matrix which commutes with the DFT. It is also shown how fractional powers of the DFT can be efficiently computed, and possible applications to multiplexing and transform coding are suggested. T
متن کاملDirect sequential evaluation of optimal orthonormal eigenvectors of the discrete Fourier transform matrix by constrained optimization
The recent emergence of the discrete fractional Fourier transform has spurred research activity aiming at generating Hermite-Gaussian-like (HGL) orthonormal eigenvectors of the discrete Fourier transform (DFT) matrix F. By exploiting the unitarity of matrix F – resulting in the orthogonality of its eigenspaces pertaining to the distinct eigenvalues – the problem decouples into finding orthonorm...
متن کاملFractional discrete Fourier transform of type IV based on the eigenanalysis of a nearly tridiagonal matrix
a Nearly Tridiagonal Matrix Magdy Tawfik Hanna1 ABSTRACT A fully-fledged definition for the fractional discrete Fourier transform of type IV (FDFT-IV) is presented and shown to outperform the simple definition of the FDFT-IV which is proved to be just a linear combination of the signal, its DFT-IV and their flipped versions. This definition heavily depends on the availability of orthonormal eig...
متن کاملDiscrete fractional Fourier transform based on the eigenvectors of tridiagonal and nearly tridiagonal matrices
The recent emergence of the discrete fractional Fourier transform (DFRFT) has caused a revived interest in the eigenanalysis of the discrete Fourier transform (DFT) matrix F with the objective of generating orthonormal Hermite-Gaussian-like eigenvectors. The Grünbaum tridiagonal matrix T – which commutes with matrix F – has only one repeated eigenvalue with multiplicity two and simple remaining...
متن کاملNormal matrix polynomials with nonsingular leading coefficients
In this paper, we introduce the notions of weakly normal and normal matrix polynomials, with nonsingular leading coefficients. We characterize these matrix polynomials, using orthonormal systems of eigenvectors and normal eigenvalues. We also study the conditioning of the eigenvalue problem of a normal matrix polynomial, constructing an appropriate Jordan canonical form.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.06959 شماره
صفحات -
تاریخ انتشار 2017